Balancing minimum spanning trees and shortest-path trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Balancing minimum spanning trees and multiple-source minimum routing cost spanning trees on metric graphs

The building cost of a spanning tree is the sum of weights of the edges used to construct the spanning tree. The routing cost of a source vertex s on a spanning tree T is the total summation of distances between the source vertex s and all the vertices d in T . Given a source vertices set S, the multiple-source routing cost of a spanning tree T is the summation of the routing costs for source v...

متن کامل

Trans-dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths

Two algorithms are presented: a linear time algorithm for the minimum spanning tree problem and an O(m + n log n/log log n) implementation of Dijkstra's shortest-path algorithm for a graph with n vertices and m edges. The second algorithm surpasses information theoretic limitations applicable to comparison-based algorithms. Both algorithms utilize new data structures that extend the fusion tree...

متن کامل

Geometric Minimum Spanning Trees

Let S be a set of n points in < d. We present an algorithm that uses the well-separated pair decomposition and computes the minimum spanning tree of S under any Lp or polyhedral metric. It has an expected running time of O(n logn) for uniform distributions. Experimentalresults show that this approachis practical. Under a variety of input distributions, the resultingimplementation is robust and ...

متن کامل

Minimum Spanning Trees∗

1 Background Members of some secret party want to shutdown some high risk communication channals, while preserving low risk channals to ensure that members are still connected in the secret network.

متن کامل

Minimum Spanning Trees

Let G =< V,E > be a connected graph with real-valued edge weights: w : E → R, having n vertices and m edges. A spanning tree in G is an acyclic subgraph of G that includes every vertex of G and is connected; every spanning tree has exactly n− 1 edges. A minimum spanning tree (MST) is a spanning tree of minimum weight which is defined to be the sum of the weights of all its edges. Our problem is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algorithmica

سال: 1995

ISSN: 0178-4617,1432-0541

DOI: 10.1007/bf01294129